Improved Exact Algorithm for the Capacitated Facility Location Problem on a Line Graph

Edward Gimadi^{1,2}, Alexandr Shtepa¹, Oxana Tsidulko^{1,2}

¹Department of Mechanics and Mathematics, Novosibirsk State University, Russian Federation ²Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences, Russian Federation

26th of August, 2019

Capacitated Facility Location Problem (general case)

Given:

- a set M of possible facility locations (|M| = m),
- a set N of clients (|N| = n);
- f_i is an opening cost for facility i,
- a_i is a capacity of facility i;
- b_j is an integer demand of client j;
- g_{ij} is a transportation cost of delivering a unit of product from facility i to client j.

Find: a subset of facilities $M' \subseteq M$ to open such that:

$$\sum_{i \in M'} f_i + \sum_{j \in N} \sum_{i \in M'} b_j g_{ij} x_{ij} \to \min$$

$$\sum_{i \in M'} x_{ij} = 1, \ j \in N,$$

$$\sum_{j\in N}b_jx_{ij}\leq a_i,\ i\in M',$$

$$x_{ij} \geq 0$$

Capacitated Facility Location Problem (general case)

Given:

- a set M of possible facility locations (|M| = m),
- a set N of clients (|N| = n);
- f_i is an opening cost for facility i,
- a_i is a capacity of facility i;
- b_j is an integer demand of client j;
- g_{ij} is a transportation cost of delivering a unit of product from facility i to client j.

Find: a subset of facilities $M' \subseteq M$ to open such that:

$$\sum_{i \in M'} f_i + \sum_{j \in N} \sum_{i \in M'} b_j g_{ij} x_{ij} \to \min$$

$$\sum_{i\in M'} x_{ij} = 1, \ j\in N,$$

$$\sum_{j\in N}b_jx_{ij}\leq a_i,\ i\in M',$$

$$x_{ij} \geq 0$$

Types of Capacitated Facility Location Problem

Metric CFLP

Transportation costs satisfy triangle inequality. (The transportation cost from i to j is defined according to the shortest path distance in network graph).

Types of Capacitated Facility Location Problem

Metric CFLP

Transportation costs satisfy triangle inequality. (The transportation cost from i to j is defined according to the shortest path distance in network graph).

Single allocation CFLP

A demand of a client must be served by only one facility.

For the allocation variables x_{ij} : $x_{ij} \in \{0,1\}$.

Multiple allocation CFLP

A client can be served by multiple facilities simultaneously.

For the allocation variables x_{ij} : $0 \le x_{ij} \le 1$.

Types of Capacitated Facility Location Problem

Metric CFLP

Transportation costs satisfy triangle inequality. (The transportation cost from i to j is defined according to the shortest path distance in network graph).

Single allocation CFLP

A demand of a client must be served by only one facility.

For the allocation variables x_{ij} : $x_{ij} \in \{0,1\}$.

Multiple allocation CFLP

A client can be served by multiple facilities simultaneously.

For the allocation variables x_{ij} : $0 \le x_{ij} \le 1$.

Statement

All variants of the problem are NP-hard.

Capacitated Facility Location Problem on a Line Graph

Given:

- a line graph $G = (V, E), V = M \uplus N$,
- M is a set of possible facility locations (|M| = m),
- N is a set of clients (|N| = n);
- f_i is an opening cost for facility i,
- a_i is a capacity of facility i;
- b_j is an integer demand of client j;
- ullet c_e is a cost of transporting a unit of product along edge $e \in E$,
- ullet P_{ij} is a (shortest) path between a facility i at vertex number v_i and a client j at vertex number v_j
- $g_{ij} = \sum_{e \in P_{ij}} c_e$ is a transportation cost of delivering a unit of product from facility i to client j.

Capacitated Facility Location Problem on a Line Graph

Find: which facilities to open such that:

$$\sum_{i \in M} f_i y_i + \sum_{i \in M} \sum_{j \in N} b_j g_{ij} x_{ij} \to \min_{y_i, x_{ij}}$$
 (1)

$$\sum_{i \in N} b_j x_{ij} \le a_i y_i, \quad i \in M, |M| = m, \tag{2}$$

$$\sum_{i \in M} x_{ij} = 1, \quad j \in N, |N| = n, \tag{3}$$

$$x_{ij} \ge 0, y_i \in \{0; 1\},$$
 (4)

where

 x_{ij} is a share of the demand of a client j at vertex number v_j served by a facility i at vertex number v_i ,

$$y_i = \begin{cases} 1, & \text{if one opens a facility } i \in M, \\ 0, & \text{otherwise.} \end{cases}$$

Capacitated Facility Location Problem on a Line Graph

Find: which facilities to open such that:

$$\sum_{i \in M} f_i y_i + \sum_{i \in M} \sum_{j \in N} b_j g_{ij} x_{ij} \to \min_{y_i, x_{ij}}$$
 (1)

$$\sum_{i \in N} b_j x_{ij} \le a_i y_i, \quad i \in M, |M| = m, \tag{2}$$

$$\sum_{i \in M} x_{ij} = 1, \quad j \in N, |N| = n, \tag{3}$$

$$x_{ij} \ge 0, y_i \in \{0; 1\},\tag{4}$$

where

 x_{ij} is a share of the demand of a client j at vertex number v_j served by a facility i at vertex number v_i ,

$$y_i = \begin{cases} 1, & \text{if one opens a facility } i \in M, \\ 0, & \text{otherwise.} \end{cases}$$

Statement

CFLP is NP-hard even on a line graph, since in the case of zero transportation costs and only one client it contains the MINIMIZATION KNAPSACK problem.

Applications of CFLP on a Line Graph

- Rest area location. Cars enter a highway at different points. What is the smallest number of rest areas that are needed along the highway to ensure that each car can access a rest area within a given distance from its point of entry?
- Transformer location. A high-voltage power line runs through rural townships. To limit power losses, step-down transformers must be installed within certain distances of the townships. What is the smallest number of transformers required to service all communities?

Our contributions

Known result: [Mirchandani et al., 1996]

The multiple allocation CFLP on a line graph can be solved by a *dynamic* programming pseudopolynomial-time algorithm with running-time

$$O(mB\min\{a_{max},B\}),$$

where $B = \sum_{j \in N} b_j$ is the total demand and a_{max} is the maximum facility capacity.

Our contributions

Known result: [Mirchandani et al., 1996]

The multiple allocation CFLP on a line graph can be solved by a *dynamic* programming pseudopolynomial-time algorithm with running-time

$$O(mB\min\{a_{max},B\}),$$

where $B = \sum_{j \in N} b_j$ is the total demand and a_{max} is the maximum facility capacity.

We present 2 modifications of this algorithm:

- 1. First modification: using binary heap, we improve time complexity to $O(mB\log(\min\{a_{max}, B\}))$.
- 2. **Second modification:** using algorithm from [Aggarwal et al., 1987], we improve time complexity to O(mB).

Reduction to CFLP with unit demands:

The algorithm from [Mirchandani et al., 1996] starts by reducing the multiple allocation CFLP with n clients to the multiple allocation CFLP with $B = \sum_{j \in N} b_j$ clients, each of unit demand.

For each facility i let ℓ_i and r_i be the lowest and the highest client indices such that facility i has enough capacity to serve all the clients of the segments $[\ell_i, v_i]$ and $[v_i, r_i]$, respectively.

For each facility i let ℓ_i and r_i be the lowest and the highest client indices such that facility i has enough capacity to serve all the clients of the segments $[\ell_i, v_i]$ and $[v_i, r_i]$, respectively.

Remark

A facility of unbounded capacity can be considered as a facility of capacity B. Let $\widetilde{a}_i = \min\{a_i, B\}$ be the revised facility capacities, $i = 1, \dots, m$.

Let $w_i(k, j)$, k < j, be the total transportation costs required to serve all the clients of the segment (k, j] from the facility $i: w_i(k, j) = \sum_{t=k}^{j} g_{it}b_t$.

Let $w_i(k,j)$, k < j, be the total transportation costs required to serve all the clients of the segment (k,j] from the facility i: $w_i(k,j) = \sum_{t=k}^{j} g_{it}b_t$.

Remark

Using data structures that can be precomputed in time O(B+m), the values $w_i(k,j)$ can be found in constant time for any given $1 \le i \le m$, $1 \le k < j \le B$ by the following formula.

$$w_{i}(k,j) = \begin{cases} D(j) - D(k) - d(i)(v_{j} - v_{k}), & \text{if } v_{i} \leq v_{k} < v_{j}, \\ D(k) + D(j) - 2D(i) - d(i)(v_{k} + v_{j} - 2v_{i}), & \text{if } v_{k} < v_{i} < v_{j}, \\ D(k) - D(j) + d(i)(v_{j} - v_{k}), & \text{if } v_{k} < v_{j} \leq v_{i}, \end{cases}$$
(5)

where the partial sums $d(t) = \sum_{j=1}^{t} c_{(j-1,j)}$ and $D(t) = \sum_{j=1}^{t} d(j)$ for all $t = 1, \ldots, B+m$ can be computed recursively in total time O(B+m).

Let $w_i(k,j)$, k < j, be the total transportation costs required to serve all the clients of the segment (k,j] from the facility i: $w_i(k,j) = \sum_{t=k}^j g_{it}b_t$.

Remark

Using data structures that can be precomputed in time O(B+m), the values $w_i(k,j)$ can be found in constant time for any given $1 \le i \le m$, $1 \le k < j \le B$ by the following formula.

$$w_i(k,j) = \begin{cases} D(j) - D(k) - d(i)(v_j - v_k), & \text{if } v_i \le v_k < v_j, \\ D(k) + D(j) - 2D(i) - d(i)(v_k + v_j - 2v_i), & \text{if } v_k < v_i < v_j, \\ D(k) - D(j) + d(i)(v_j - v_k), & \text{if } v_k < v_j \le v_i, \end{cases} \tag{5}$$

where the partial sums $d(t) = \sum_{j=1}^{t} c_{(j-1,j)}$ and $D(t) = \sum_{j=1}^{t} d(j)$ for all t = 1, ..., B+m can be computed recursively in total time O(B+m).

Remark

All the values r_i and ℓ_i for i = 1, ..., m can be found in time O(m+B).

Dynamic Programming Algorithm

Algorithm from [Mirchandani et al., 1996].

Let S(i, j) be the optimum value of a subproblem in which the first j clients on the line are optimally served by a subset of the first i facilities.

For all
$$i = 1, \ldots, m, j = 1, \ldots, B$$

$$S(i,j) = \begin{cases} \min\left\{S(i-1,j), f_i + \min_{\max\{j-\widetilde{a}_i,\ell_i\} \le k \le j} \{ & S(i-1,k) + w_i(k,j) \} \right\}, \\ & \text{if } \ell_i \le j \le r_i, \\ S(i-1,j), & \text{otherwise.} \end{cases}$$
 (6)

Time complexity: $O(mB\min\{a_{max}, B\})$.

The First Modification: Using Binary Heap

Definition

A minimum binary heap is a complete binary tree, in which the value of each node is greater than or equal to the value of its parent, with the minimum-value element at the root.

If q is the number of nodes in a binary heap, then each of the operations: deleting an element, adding a new element and restoring the shape property of a heap can be done in $O(\log q)$ time, while finding the minimum element takes O(1) time.

Theorem

The multiple allocation CFLP on a line graph can be solved using binary heap in $O(mB\log(\min\{a_{max},B\}))$ time.

$$S(i,j) = \begin{cases} \min\Big\{S(i-1,j), f_i + \min_{\max\{j-\widetilde{a}_i,\ell_i\} \leq k \leq j} \{ & S(i-1,k) + w_i(k,j)\} \Big\}, \\ & \text{if } \ell_i \leq j \leq r_i, \\ S(i-1,j), & \text{otherwise}. \end{cases}$$

$$S(i,j) = \begin{cases} \min\Big\{S(i-1,j), f_i + \min_{\max\{j-\widetilde{a_i},\ell_i\} \leq k \leq j} \{ & S(i-1,k) + w_i(k,j)\} \Big\}, \\ & \text{if } \ell_i \leq j \leq r_i, \\ S(i-1,j), & \text{otherwise}. \end{cases}$$

Consider the *i*-th row of table S. To compute element S(i,j) one needs to find $\min_{1 \le k \le B} A_i(k,j)$, where

$$A_i(k,j) = \begin{cases} S(i-1,k) + w_i(k,j), & \text{if } \max\{j - \widetilde{a}_i, \ \ell_i\} \le k \le j, \\ \infty, & \text{otherwise,} \end{cases}$$
 (7)

$$S(i,j) = \begin{cases} \min\Big\{S(i-1,j), f_i + \min_{\max\{j-\widetilde{a}_i,\ell_i\} \leq k \leq j} \{ & S(i-1,k) + w_i(k,j) \} \Big\}, \\ & \text{if } \ell_i \leq j \leq r_i, \\ S(i-1,j), & \text{otherwise}. \end{cases}$$

Consider the *i*-th row of table S. To compute element S(i, j) one needs to find $\min_{1 \leq k \leq B} A_i(k, j)$, where

$$A_{i}(k,j) = \begin{cases} S(i-1,k) + w_{i}(k,j), & \text{if } \max\{j-\widetilde{a}_{i}, \ \ell_{i}\} \leq k \leq j, \\ \infty, & \text{otherwise,} \end{cases}$$
 (7)

We will show how to find minimum element

Definition

An $\alpha \times \beta$ -matrix A with real entries is **monotone in columns**, if for every pair of columns with indices $j_0 < j_1$, it holds that $i(j_0) \le i(j_1)$, where i(j) is the smallest row index i, such that element A(i,j) equals to the minimum value in the j-th column of A. Matrix A is said to be **totally monotone in columns**, if every 2×2 submatrix of A is monotone.

Definition

An $\alpha \times \beta$ -matrix A with real entries is **monotone in columns**, if for every pair of columns with indices $j_0 < j_1$, it holds that $i(j_0) \le i(j_1)$, where i(j) is the smallest row index i, such that element A(i,j) equals to the minimum value in the j-th column of A. Matrix A is said to be **totally monotone in columns**, if every 2×2 submatrix of A is monotone.

Statement [Aggarwal et al., 1987].

Let an $\alpha \times \beta$ -matrix A be totally monotone in columns. There exists an algorithm [Aggarwal et al., 1987] that finds the minimum entry in each column of A in $O(\alpha+\beta)$ time.

Definition

An $\alpha \times \beta$ -matrix A with real entries is **monotone in columns**, if for every pair of columns with indices $j_0 < j_1$, it holds that $i(j_0) \le i(j_1)$, where i(j) is the smallest row index i, such that element A(i,j) equals to the minimum value in the j-th column of A. Matrix A is said to be **totally monotone in columns**, if every 2×2 submatrix of A is monotone.

Statement [Aggarwal et al., 1987].

Let an $\alpha \times \beta$ -matrix A be totally monotone in columns. There exists an algorithm [Aggarwal et al., 1987] that finds the minimum entry in each column of A in $O(\alpha+\beta)$ time.

Lemma 1.

For each $1 \le i \le m$, the $B \times B$ -matrix A_i defined by (7) is totally monotone in columns.

The multiple allocation CFLP on a line graph can be solved in O(mB) time.

Proof.

An improved exact algorithm for the multiple allocation CFLP on a line works as follows.

1. We reduce the multiple allocation CFLP to the multiple allocation CFLP with unit demands as in [Mirchandani et al., 1996].

The multiple allocation CFLP on a line graph can be solved in O(mB) time.

Proof.

- 1. We reduce the multiple allocation CFLP to the multiple allocation CFLP with unit demands as in [Mirchandani et al., 1996].
- 2. We compute the sums from Remark 1 in O(m+B) time and the values l_i, r_i for $1 \le i \le m$, so that we could further calculate any element $w_i(k,j)$ in O(1) time.

The multiple allocation CFLP on a line graph can be solved in O(mB) time.

Proof.

- 1. We reduce the multiple allocation CFLP to the multiple allocation CFLP with unit demands as in [Mirchandani et al., 1996].
- 2. We compute the sums from Remark 1 in O(m+B) time and the values l_i, r_i for $1 \le i \le m$, so that we could further calculate any element $w_i(k,j)$ in O(1) time.
- 3. For each $i=1,\ldots,m$ we compute the i-th row of table S defined by (6) as follows:

The multiple allocation CFLP on a line graph can be solved in O(mB) time.

Proof.

- 1. We reduce the multiple allocation CFLP to the multiple allocation CFLP with unit demands as in [Mirchandani et al., 1996].
- 2. We compute the sums from Remark 1 in O(m+B) time and the values l_i, r_i for $1 \le i \le m$, so that we could further calculate any element $w_i(k,j)$ in O(1) time.
- 3. For each $i=1,\ldots,m$ we compute the i-th row of table S defined by (6) as follows:
- 4. In a $B \times B$ -matrix A_i defined as (7), which is totally monotone in columns, according to Lemma 1, in time O(B) we obtain minimum entries of each column of matrix A_i by applying algorithm from [Aggarwal et al., 1987].

The multiple allocation CFLP on a line graph can be solved in O(mB) time.

Proof.

- 1. We reduce the multiple allocation CFLP to the multiple allocation CFLP with unit demands as in [Mirchandani et al., 1996].
- 2. We compute the sums from Remark 1 in O(m+B) time and the values l_i, r_i for $1 \le i \le m$, so that we could further calculate any element $w_i(k,j)$ in O(1) time.
- 3. For each i = 1, ..., m we compute the i-th row of table S defined by (6) as follows:
- 4. In a $B \times B$ -matrix A_i defined as (7), which is totally monotone in columns, according to Lemma 1, in time O(B) we obtain minimum entries of each column of matrix A_i by applying algorithm from [Aggarwal et al., 1987].
- 5. Having all the minimum entries of each column of A_i been calculated, we can compute all elements of the *i*-th row of S in additional O(B) time.

The multiple allocation CFLP on a line graph can be solved in O(mB) time.

Proof.

- 1. We reduce the multiple allocation CFLP to the multiple allocation CFLP with unit demands as in [Mirchandani et al., 1996].
- 2. We compute the sums from Remark 1 in O(m+B) time and the values l_i, r_i for $1 \le i \le m$, so that we could further calculate any element $w_i(k,j)$ in O(1) time.
- 3. For each $i=1,\ldots,m$ we compute the i-th row of table S defined by (6) as follows:
- 4. In a $B \times B$ -matrix A_i defined as (7), which is totally monotone in columns, according to Lemma 1, in time O(B) we obtain minimum entries of each column of matrix A_i by applying algorithm from [Aggarwal et al., 1987].
- 5. Having all the minimum entries of each column of A_i been calculated, we can compute all elements of the *i*-th row of S in additional O(B) time.
- 6. Finally, since S has m rows the total time complexity of the algorithm is O(mB).

Conclusion and final remarks

For the multiple allocation CFLP on a line

- In [Mirchandani et al., 1996]: $O(mB\min\{a_{max}, B\})$ time algorithm
- Our first modification: $O(mB\log(\min\{a_{max}, B\}))$ time algorithm.
- Our second modification: O(mB) time algorithm.

Conclusion and final remarks

For the multiple allocation CFLP on a line

- In [Mirchandani et al., 1996]: $O(mB\min\{a_{max}, B\})$ time algorithm
- Our first modification: $O(mB\log(\min\{a_{max}, B\}))$ time algorithm.
- Our second modification: O(mB) time algorithm.

Remark

The second modification contains the algorithm from [Aggarwal et al., 1987], which has a large constant factor in the big O. Therefore, despite of the obvious advantage in the theoretical evaluation of the running-time, in practice for small values of B the second modification may work slower than the first one.

Conclusion and final remarks

For the multiple allocation CFLP on a line

- In [Mirchandani et al., 1996]: $O(mB\min\{a_{max}, B\})$ time algorithm
- Our first modification: $O(mB\log(\min\{a_{max}, B\}))$ time algorithm.
- Our second modification: O(mB) time algorithm.

Remark

The second modification contains the algorithm from [Aggarwal et al., 1987], which has a large constant factor in the big O. Therefore, despite of the obvious advantage in the theoretical evaluation of the running-time, in practice for small values of B the second modification may work slower than the first one.

Open questions:

- Is there an O(B+m) time algorithm for multiple allocation CFLP on a line?
- Is there an efficient pseudopolinomial-time algorithm for the single allocation CFLP on a line graph?

References:

- [Aggarwal et al., 1987] A. Aggarwal, M. M. Klawe, S. Moran, P. Shor, R. Wilber, "Geometric applications of a matrix searching algorithm," Algorithmica, 2, 1987, pp. 195–208.
- [Mirchandani et al., 1996] P. Mirchandani, R. Kohli, A. Tamir, "Capacitated location problem on a line," Transportation Science, 30(1), 1996, pp. 75–80.

Thanks for your attention!

Lemma

For each $1 \le i \le m$, the $B \times B$ -matrix A_i defined by (7) is totally monotone in columns.

Proof. The proof is by contradiction. But first, we need to show that the function $w_i(k,j)$ is concave for each i, that is, for each $i:1\leq i\leq m$ and every $1\leq k_0< k_1\leq j_0< j_1\leq B$:

$$w_i(k_0, j_0) + w_i(k_1, j_1) \le w_i(k_0, j_1) + w_i(k_1, j_0).$$
(8)

It's proved by definition.

Lemma

For each $1 \le i \le m$, the $B \times B$ -matrix A_i defined by (7) is totally monotone in columns.

Proof. The proof is by contradiction. But first, we need to show that the function $w_i(k,j)$ is concave for each i, that is, for each $i:1\leq i\leq m$ and every $1\leq k_0< k_1\leq j_0< j_1\leq B$:

$$w_i(k_0, j_0) + w_i(k_1, j_1) \le w_i(k_0, j_1) + w_i(k_1, j_0).$$
(8)

It's proved by definition.

Suppose that the matrix A_i defined by (7) is not totally monotone. Therefore, there exist indices $k_0 < k_1$ and $j_0 < j_1$, such that

$$A_i(k_0, j_0) > A_i(k_1, j_0)$$
 and $A_i(k_0, j_1) < A_i(k_1, j_1)$. (9)

• Suppose that the four elements of matrix A_i in (9) are the white elements of A_i . Since element $A_i(k_1,j_0)$ is white, we have $k_1 \leq j_0$, and, therefore, $k_0 < k_1 \leq j_0 < j_1$. Summing the inequalities from (9) and using the definition of $A_i(k,j)$ from (7), we get:

$$S(i-1,k_0) + S(i-1,k_1) + w_i(k_0,j_0) + w_i(k_1,j_1) >$$

$$S(i-1,k_0) + S(i-1,k_1) + w_i(k_0,j_1) + w_i(k_1,j_0),$$

which contradicts the concave property (8) of $w_i(k, j)$.

• Suppose that the four elements of matrix A_i in (9) are the white elements of A_i . Since element $A_i(k_1,j_0)$ is white, we have $k_1 \leq j_0$, and, therefore, $k_0 < k_1 \leq j_0 < j_1$. Summing the inequalities from (9) and using the definition of $A_i(k,j)$ from (7), we get:

$$S(i-1,k_0) + S(i-1,k_1) + w_i(k_0,j_0) + w_i(k_1,j_1) >$$

$$S(i-1,k_0) + S(i-1,k_1) + w_i(k_0,j_1) + w_i(k_1,j_0),$$

which contradicts the concave property (8) of $w_i(k, j)$.

- Suppose that among the four elements of matrix A_i in (9), there exists a gray element.
 - If element $A_i(k_1, j_0)$ is gray, then we get a straightaway contradiction with the first inequality in (9).
 - If element $A_i(k_0, j_1)$ is gray, then we obtain the same for second inequality in (9).
 - ▶ If element $A_i(k_0, j_0)$ is gray, then according to the definition of A_i and the choice of indices $k_0 < k_1$ and $j_0 < j_1$, either $A_i(k_1, j_0) = \infty$, or $A_i(k_0, j_1) = \infty$, and we get the same type of contradiction with (9).
 - ▶ If element $A_i(k_1, j_1)$ is gray, then again either $A_i(k_1, j_0) = \infty$, or $A_i(k_0, j_1) = \infty$, and we obtain the same contradiction with (9).

Therefore, matrix A_i is totally monotone in columns.