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University of Prǐstina, Faculty of mathematics and science
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A technique, based on the residue number system (RNS) with operands in the
diminished-1 number system, has been used in several applications which include digital
signal processing (DSP), implementation international data encryption algorithm (IDEA),
Fermat number transform (FNT), and so on. For implementation of these techniques, sev-
eral designs for modulo 2n+1 diminished-1 arithmetic blocks have been proposed. Modulo
(2n + 1) diminished-1 multiplication plays an important role in these arithmetic blocks.
Existing algorithms for modulo (2n + 1) diminished-1 multiplication use either recursive
modulo (2n + 1) addition, or regular binary multiplication integrated with the modulo
reduction operation.

This paper proposes an enhanced approach for the design modulo 2n + 1 multipliers
for diminished-1 operands with respect to those which have been already published. It is
improved in a way that the proposed memoryless based multiplication can be decomposed
into a number of small units. The architecture for the new multipliers consists of new
partial product generator, inverted end-around-carry, carry-save-adder tree and one (2n +
1) adder.

1. Introduction

The Residue Number System (RNS) is a non-weighted integer system that perform decompo-
sition of arithmetic operations into several independent sub-operations and therefore implies
carry-free and high speed operations [5]. RNS is useful in several applications including Digital
Signal Processing [14, 9], Image Processing [4], Fast Fourier Transform computation [10], cryp-
tographic algorithms such as International Data Encryption Algorithm (IDEA) [7]. Moreover
RNS is also inherently fault tolerant and makes diagnosis and correction of errors easier [8].
Apart from these, modulo (2n + 1) multiplier is also one of the critical component applications
in the area of Cryptographic algorithms like International Data Encryption Algorithm (IDEA)
which is frequently used for secured data transmission and in Fermat Number Transform (FNT).

In residue arithmetic, the moduli set (2n − 1, 2n, 2n + 1) has attracted attention because it
is suitable for conversion of binary representation into RNS and vice versa. Using this set, for
modulo (2n−1) and 2n operations, input operands are n - bit wide, but for the modulo (2n +1)
operations, input are (n + 1) - bits wide, which makes this modulo operation difficult and calls
for special attention.

The diminished-1 representation of RNS binary numbers was introduced in [6] to speed up
the modulo (2n +1) arithmetic operations. Since only n bits are required for the representation
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of any digit in RNS, the diminished-1 representation can lead to implementations with similar
delay and area complexity as for modulo (2n − 1) and 2n representations. A lot of papers on
the design of modulo (2n − 1) adders and multipliers for diminished-1 operands have already
been published [13, 12, 11]. However, special treatment is required for operands equal to zero.
Since this can lead to implementations with increased delay and area complexity, the efficient
integration of zero handling into modulo (2n + 1) arithmetic units is an open problem.

This paper proposes an enhanced approach for the design modulo 2n + 1 multipliers for
diminished-1 operands with respect to those which have been already published. It is improved
in a way that the proposed memoryless based multiplication can be decomposed into a num-
ber of small units. The architecture for the new multipliers consists of new partial product
generator, inverted end-around-carry, carry-save-adder tree and one (2n + 1) adder.

Organization of the paper is as follows. After recalling the diminished-1 arithmetic in
Section 2, the architecture of diminished-1 modulo (2n + 1) multiplier is presented in section 3.
Section 4 is an example and last section is conclusion.

2. Diminished-One Arithmetic

To represent all integers in RNS, using modulo (2n+1), (n+1) bits are required. The additional
bit is required in order to represent the number 2n = 〈−1〉2n+1. To overcome the problem of
performing binary arithmetic with this additional bit, a modified binary number system is used
in order to avoid additions and multiplications involving the additional bit. This allows the
additional bit to be only 1 when the number to be represented is 0, which can be achieved by
subtracting 1 from the normal binary number. The advantage of this representation is that
zero is uniquely identified by MSB=1, for which all arithmetic operations are inhibited.

The normal representation and this diminished-1 representation are indicated in the Table 1
for n = 4. When performing arithmetic for mod (2n + 1) using diminished-1 system, all

T a b l e 1. Correspondence between normal, binary
and diminished-1 representations

Normal Binary Diminished-1

0 00000 1
1 00001 2
2 00010 3
3 00011 4
4 00100 5
5 00101 6
6 00110 7
7 00111 8
8 01000 9 (−8)
9 (−8) 01001 10 (−7)

10 (−7) 01010 11 (−6)
11 (−6) 01011 12 (−5)
12 (−5) 01100 13 (−4)
13 (−4) 01101 14 (−3)
14 (−3) 01110 15 (−2)
15 (−2) 01111 16 (−1)
16 (−1) 10000 0

input operands and the corresponding results are expressed in diminished-1 form. Let x′ be
diminished-1 representation of normal binary number x ∈ [0, 2n], namely

x′ = 〈x − 1〉2n+1. (1)



Diminished-One Modulo (2n + 1) Multiplier Design 3

In (1), when x 6= 0, x′ ∈ [0, 2n − 1] is an n-bit number, therefore (n + 1)-bit circuits can be
avoided in this case. However, when x = 0, x′ = 2n is an (n + 1)-bit number. This leads to the
special treatment for x′ = 0. According to this representation, number x′ is represented as x′

nX ′,
where x′

n is the zero indication bit and X ′ = x′

n−1x
′

n−2 . . . x′

0 is the magnitude representation [3].
Ordinary addition in this number system can be obtained as follows [13]:

〈x + y〉2n+1 = S

〈(x′ + 1) + (y′ + 1)〉2n+1 = S ′ + 1

〈x′ + y′ + 1〉2n+1 = S ′

〈x′ + y′ + Cout〉2n = S ′

(2)

where Cin = Cout. Diminished-one addition can be implemented by end-around-carry adder.
Ordinary multiplication in this number system is performed as follows [2, 1]:

〈x × y〉2n+1 = Q

〈(x′ + 1) × (y′ + 1)〉2n+1 = Q′ + 1

〈x′ × y′ + x′ + y′〉2n+1 = Q′

(3)

Number in diminished-one arithmetic is represented by (n+1) bits where the (n+1)-th bit
is used to indicate zero.

3. Diminished-1 modulo (2n + 1) multiplication

The modulo (2n + 1) multiplication algorithm (3) can be easily adapted for the diminished-1
number representation of input operands and output product. Thereby, the two additional
terms x′ and y′ have to be added in the modulo carry-save-adder, resulting in small increasing
of area and delay. The special case of x′y′ = 0 has to be treated separately and the constant
correction term has to be adapted.

The architecture of the proposed modulo 2n+1 diminished-1 multiplier consists of three main
blocks as it is shown in Figure 1. First block is a partial product generator, second is Wallace
tree for partial product addition and finally there is binary adder for product generation.

In Wallace tree, the number of operands is reduced by a factor of 2/3 at each level. Let λ(l)
be the maximal number of operands that can be added by an l-th level CSA tree, λ(1) = 3.
Each CSA has three inputs and two outputs, hence the number of output times (3/2) will be
the number of inputs, that is, the number of outputs in the upper level. If the number of
outputs is not a multiple of 2, then 〈λ(l − 1)〉2 indicates the number of extra outputs in the
upper level. Hence λ(l) can be defined recursively as in Equation (4).

λ(l) =
⌊λ(l − 1)

2

⌋

× 3 + 〈λ(l − 1)〉2. (4)

The easier way is using the Equation (5)

Number of levels =
log(k/2)

log(3/2)
, for k(

2

3
)l ≤ 2 (5)

where k is number of operands.
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Fig. 1. Architecture of diminished-1 modulo 2n + 1 multiplier for n = 4.

T a b l e 2. Partial product generation modulo 24 + 1
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If the input residues are (n+1)-bits wide, the partial products for modulo 2n+1 multiple are
arranged as n-bits wide vectors, because x′

n (y′

n) is a zero indicator, which is handled separately.
The partial product generation for inputs of 5 bits width is shown in Table 2. Obviously, 4-bits
x′

3x
′

2x
′

1x
′

0 (multiplier) and 4-bits y′

3y
′

2y
′

1y
′

0 (multiplicand) are required for the representation of
nonzero diminished-1 binary numbers.

In this multiplication, bits with weight greater than 23, which are placed to the left of the
straight line, are complemented and repositioned to the right of the line.

Assuming that the coefficient word length is 4-bits and input sample word length is 4-bits, in
Fig. 1 is shown the hierarchical decomposition of Wallace tree logic. The partial sum are added
by using five carry-save-adders (CSA) and modulo 17 adder realized as carry-propagate-adder
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with end-around-carry. Partial product is generated in parallel.

The principle of the proposed memoryless-based implementation of partial product gener-
ator is shown in Fig 2. It consists of n 2-to-1 multiplexers, where n is the multiplier word
length. Each of the MUX consists of n MUX cells (bit-level) working in parallel, where n is
the word length of the multiplier (x′). The partial product is generated by connecting zero and
multiplier bit to the MUX inputs and multiplicand bit to the select input. This is well known
OR logic gate implemented using 2-to-1 MUX. Finally, circular shifting s− 1 bits to the left of
the MUX output, for 1 ≤ s ≤ n, is performed. After circular shifting, s − 1 LSB bits are used
as complement. Rotation n requires no logic: just connection of the wires appropriately.

0 1 0 1 0 1 0 1

x′

3 x′

2 x′

1 x′

0

Rotation Rotation Rotation Rotation

pp3 pp2 pp1 pp0

3 2 1 0

y′

���4

���4 ���4 ���4 ���4

���1 ���1 ���1 ���1

���4 ���4 ���4 ���4

Fig. 2. Partial products generator for n = 4.

An implementation of the diminished-1 modulo 17 partial product generator for pp2 is shown
in Figure 3. The small circles above the register represent a complement of the input bit. As
it is shown, the rotating function is incorporated in the register by writing partial product bits
in proper order.
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Fig. 3. A wiring diagram of partial product pp2 generator.

The addition of the partial product can be performed by either a (n +1)- stage Carry-Save-
Adder (CSA) array or by a Wallace tree, until a Carry and Sum vector pair is reached. It
is well known that using a Wallace tree speed up the addition of the partial products. An
implementation of the modulo (2n + 1) multiplier, based on a Wallace tree, for addition of
the diminished-1 operands, is shown in Figure 4. The small circles on the carry output of the
adders represent a complemented carry output.
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Fig. 4. A wiring diagram of modulo 17 multiplier for diminished-1 operands.

4. An Example

Validity of the above diminished-1 multiplication of two 4-bits numbers is demonstrated on fol-
lowing example. Let x′ = 1010 = 10102 and y′ = 910 = 10012. For the modulo 17 multiplication
according to proposed methodology the following operands are derived:

1010×1001

pp0 = 1 0 1 0
pp1 = 0 0 0 1
pp2 = 0 0 1 1
pp3 = 0 0 1 0
x′ = 1 0 1 0
y′ = 1 0 0 1
cor = 0 0 0 0
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The first carry-save-adder

pp0 = 1 0 1 0
pp1 = 0 0 0 1
pp2 = 0 0 1 1

S1 = 1 0 0 0
C1 = 0 0 1 1

1

The second carry-save-adder

pp3 = 0 0 1 0
x′ = 1 0 1 0
y′ = 1 0 0 1

S2 = 0 0 0 1
C2 = 1 0 1 0

0

The third carry-save-adder

S1 = 1 0 0 0
C1 = 0 1 1 1
S2 = 0 0 0 1

S3 = 1 1 1 0
C3 = 0 0 0 1

1

The fourth carry-save-adder

S3 = 1 1 1 0
C3 = 0 0 1 1
C2 = 0 1 0 0

S4 = 1 0 0 1
C4 = 0 1 1 0

1

The fifth carry-save-adder contains only half-adders since cor = 0000.

S4 = 1 0 0 1
C4 = 1 1 0 1

S5 = 0 1 0 0
C5 = 1 0 0 1

0

Finally

S5 = 0 1 0 0
C5 = 0 0 1 0

= 0 0 1 1 0
1

Q′ = 0 1 1 1

Thus Q′ = 7, which can be verified to be true: Q′ =
〈
〈9 × 10〉17 + 9 + 10

〉

17
= 7.

5. Conclusion

In this paper, an improved method for the design modulo 2n + 1 multipliers for diminished-1
operands is presented. It is upgraded in a way that the proposed memoryless based multipli-
cation has been decomposed into a number of small units.To achieve high speed, new partial
product generator combining with the Wallace tree is adopted for the multipliers.

Future research includes the extension of this study to Xilinx chips, the power-figure mea-
surement and a full characterization of each design option at layout level.
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