
On the identification of the piezo-conductivity coefficient
in the pseudoparabolic equation of filtration type

A.Sh. Lyubanova
Siberian Federal University, Russia

e-mail: lubanova@mail.ru

The report discusses the inverse problem on determination of an unknown coefficient
in the second order term of the multi-dimensional linear pseudoparabolic equation
of the third order under the initial data and the Dirichlet boundary condition. The
integral condition of overdetermination on the boundary is taken as additional data for
the identification of the unknown coefficient. The assumptions on the input data are
formulated wherein the local existence and uniqueness of the solution of the inverse
problem is proved.

1. Introduction. The statement of the problem and preliminaries

An inverse problem for the pseudoparabolic equation

(u + L1u)t + L2u = f (1.1)

with the differential operators L1 and L2 of the second order in spacial variables is discussed
in this paper. Applications of the problem deal with the recovery of unknown parameters
indicating physical properties of a medium (see [1], [2], [3]). Since the natural stratum is
involved, the parameters in (1.1) should be determined on the basis of the investigation of
its behaviour under the natural non-steady-state conditions. This leads to the interest in
studying the inverse problems for (1.1) and its analogue.

A variety of works are devoted to the inverse problems for (1.1) (see [4], [5], [6] and
references therein). The results of [4],[6] are concerned with the reconstructing of unknown
source f and the kernels in integral term of (1.1) with the integro-differential operator L2. To
the present author’s knowledge, inverse problems of the identification of unknown variable
coefficients in the terms of the second and third order of (1.1) have not been studied yet.

Let Ω be a domain in Rn with a boundary ∂Ω ∈ C2, T an arbitrary real number and
QT = Ω× (0, T ). Throughout this paper we use the notation ‖ · ‖ and (·, ·) for the norm and
the inner product of L2(Ω); ‖ · ‖j and

〈
·, ·

〉
j

are the norm of W j
2 (Ω) and the duality relation

between
◦

W j
2 (Ω) and W−j

2 (Ω), respectively (j = 1, 2); as usual W 0
2 (Ω) = L2(Ω).

Let us introduce linear differential operators M : W 1
2 (Ω) → (W 1

2 (Ω))∗ and L : W 1
2 (Ω) →

L2(Ω) of the form

Mv = −div(M(x)∇v) + m(x)v, Lv =
n∑

i=1

li(x)vxi
+ l(x)v

where M(x) ≡ (mij(x)) is a matrix of functions mij(x), i, j = 1, 2, . . . , n.
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The aim of the paper is to establish the local existence and uniqueness of the solution
to the inverse problem of finding the coefficient k(t) in (1.1) with L1 = M , L2 = k(t)M + L
given the additional boundary data.

We assume that the following conditions are fulfilled.
I. mij(x), ∂mij/∂xr , i, j, r = 1, 2, . . . , n, and m(x) are bounded in Ω. M is an operator of

elliptic type, that is, there exist positive constants m1 and m2 such that for any v ∈
◦

W 1
2 (Ω)

m1‖v‖2
1 ≤

〈
Mv, v

〉
1
≤ m2‖v‖2

1. (1.2)

II. There exists a positive constant m3 such that for any v ∈ W 2
2 (Ω)

‖Mv‖ ≤ m3‖v‖2. (1.3)

III. mij(x) = mji(x) for i, j = 1, 2, . . . , n and m(x) ≥ 0 for x ∈ Ω.
IV. li(x), i, j, l = 1, 2, . . . , n, and l(x) are bounded in Ω. For any v ∈ W 1

2 (Ω)

‖Lv‖0 ≤ λ‖v‖1 (1.4)

with a positive constant λ.

We are studying the following inverse problem.

Problem 1. For a given constant η and functions f(t, x), g(t, x), β(t, x), U0(x), ω(t, x),
ϕ1(t), ϕ2(t) find the pair of functions (u(t, x), k(t)) satisfying the equation

ut + ηMut + k(t) Mu + Lu = f(t, x), (t, x) ∈ QT ,

and the conditions
(u + ηMu)

∣∣
t=0

= U0(x), x ∈ Ω,

u
∣∣
∂Ω

= β(t, x), t ∈ [0, T ],∫
∂Ω

{
η
∂ut

∂ν
+ k(t)

∂u

∂ν

}
ω(t, x) dS + ϕ1(t)k(t) = ϕ2(t), t ∈ (0, T ). (1.5)

Here ∂
∂ν

= (n,M(x)∇) and n is the unit outward normal to ∂Ω.

If ω(t, x) ≡ 1 and ϕ1 ≡ 0, then the integral condition of overdetermination (1.5) means
a given flux of a liquid through the surface ∂Ω, for instance, the total discharge of a liquid
through the surface of the ground. Similar nonlocal conditions were considered in [7],[8].

We introduce functions a(t, x), hη(t, x), b(t, x) and bη(t, x) as the solutions of the Dirichlet
problems

Ma = 0 bη + ηMbη = 0 in Ω, β(t, x), a
∣∣
∂Ω

= bη
∣∣
∂Ω

= β(t, x);

Mb = 0 hη + ηMhη = 0 in Ω, b
∣∣
∂Ω

= hη
∣∣
∂Ω

= ω(t, x), (1.6)

respectively, and keep the following notation:〈
Mv1, v2

〉
1,M

= (M(x)∇v1,∇v2) + (m(x)v1, v2), v1, v2 ∈ W 1
2 (Ω);

Ψ(t) =
〈
Ma, b

〉
1,M

, F (t, x) = at − f(t, x) + La,

Φη(t) = ϕ2(t)−
η

2
〈Mat, h

η〉1,M + (f(t, x)− at, h
η),



On the identification of the coefficient in the equation of filtration type 3

2. The main result

In this section we prove the local existence and uniqueness theorem for Problem 1.

Theorem 2.1. Let the operators M and L satisfy I–IV and η is a positive constant. Assume
that

(i) f(t, x) ∈ C([0, T ]; L2(Ω)), β(t, x) ∈ C1([0, T ]; W
3/2
2 (∂Ω), U0(x) ∈ L2(Ω)),

ϕi(t) ∈ C[0, T ], i = 1, 2;

(ii) U0(x), β(t, x), ω(t, x), ϕ1(t), ϕ2(t) are nonnegative functions and∫
Ω

hη dx ≥ h0 = const > 0, t ∈ [0, T ];

(iii) there exists a positive constant α > 0 such that

Ψ(t) ≥ α, t ∈ [0, T ],

a(0, x)− U0(x) ≥ 0, x ∈ Ω,

Then there exists T0, 0 < T0 ≤ T , such that Problem 1 has a solution
(
u(t, x), k(t)

)
∈

C1([0, T0]; W
2
2 (Ω))×C[0, T0] and the solution is unique. Moreover, the coefficient k(t) satisfies

the estimate
|k(t)| ≤ k1 (2.1)

with a positive constant k1 for t ∈ [0, T0].

Proof. Following the idea in [9], we reduce Problem 1 to an equivalent inverse problem
with a nonlinear operator equation for k(t). Let us set w(t, x) = a(t, x) − u(t, x). Then the
pair (w(t, x), k(t)) is a solution of the problem{

wt + ηMwt + k(t)Mw + Lw = F (t, x), (t, x) ∈ QT ;

(w + ηMw)
∣∣
t=0

= a(0, x)− U0(x), x ∈ Ω; w
∣∣
∂Ω

= 0, t ∈ (0, T );
(2.2)

∫
∂Ω

{
η
∂wt

∂ν
+ k(t)

∂w

∂ν

}
ω ds = (ϕ1 + Ψ)k(t)− ϕ2 + η

〈
Mat, h

η
〉

1,M
, (2.3)

t ∈ (0, T ). By virtue of the integration by parts and (1.6), (2.3) we have

(wt + ηMwt, h
η)0 + k(t)(Mw,hη)

= −
{

(ϕ1 + Ψ)k(t)− ϕ2 + η
〈
Mat, h

η
〉

1,M

}
− k(t)

η
(w, hη). (2.4)

Multiplying (2.21) by hη(t, x), integrating over Ω and substituting (2.4) into the resulting
equation yield

k(t)
(
ϕ1(t) + Ψ(t) +

1

η
(w, hη)

)
= Φη(t)− (L(a− w), hη) . (2.5)
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It is easily seen that Problem 1 has a unique solution if and only if the problem (2.2), (2.5)
has a unique solution. Therefore it is sufficient to prove the assertion of the theorem for
(2.2), (2.5).

We seak a solution (w(t, x), k(t)) by the iteration scheme {(wi(t, x), ki(t))}∞i=0:{
wi

t + ηMwi
t + ki−1(t)Mwi + Lwi = F (t, x),

(wi + ηMwi)
∣∣
t=0

= a(0, x)− U0(x), wi
∣∣
∂Ω

= 0,
(2.6)

ki(t)
(
ϕ1(t) + Ψ(t) +

1

η
(wi, hη)

)
= Φη(t)−

(
L(a− wi), hη

)
(2.7)

for i = 1, 2, 3, . . .; w0(t, x) ≡ 0. The initial approximation k0 being a positive constant
determined later.

We begin with estimating ki(t), i = 1, 2, 3, . . . . Suppose that for i = 1, 2, 3, . . . there
exists ti−1

0

(
0 < ti−1

0 ≤ T
)

and a positive constant ki−1
2 satisfying the inequality

|ki−1(t)| ≤ ki−1
2 for t ∈ [0, ti−1

0 ]. (2.8)

Multiplying (2.61) by Mwi and integrating over Ω, we obtain

‖∇wi(t)‖2 + η‖Mwi(t)‖2 ≤ B2 exp
(
B1T +

2t

η
ki−1

2

)
, t ∈ [0, ti−1

0 ]. (2.9)

Here we use the Gronwall’s lemma, the embedding theorem and the properties (1.2) and
(1.4). The positive constants B1, B2 depend on T , η, m0, m1, λ, mes Ω ‖a(0, x) − U0‖,
‖F‖C([0,T ];L2(Ω)). Applying the Friedrichs’ inequality to (2.9) gives

‖wi(t)‖ ≤ KB
1/2
2 exp

(1

2

(
B1T +

2t

η
ki−1

2

))
, t ∈ [0, ti−1

0 ]. (2.10)

Now acting with the operator (I + ηM)−1 : W−1
2 (Ω) →

◦
W 1

2 (Ω) (I is the identity operator)
on (2.61) and integrating over (0, t), 0 ≤ t ≤ ti−1

0 , we arrive at the integral equation for wi:

wi = (I + ηM)−1(a(0, x)− U0) +

∫ t

0

(I + ηM)−1
(
F − ki−1(τ)Mwi − Lwi

)
dτ.

Inserting this expression into the left side of (2.7) yields

ki(t)
[
ϕ1(t) + Ψ(t) +

1

η

(
(I + ηM)−1(a(0, x)− U0), h

η
)

+
1

η

( ∫ t

0

(I + ηM)−1
(
F − ki−1(τ)Mwi − Lwi

)
dτ, hη

)]
= Φη(t)−

(
L(a− wi), hη

)
.

Let i = 1. Since k0 is a positive constant, the inequalities (1.2), (1.4), (2.9), (2.10) and
the assumption (iii′) of Theorem 2.1 give

1

η

(
(I + ηM)−1(a(0, x)− U0), h

η
)

+ ϕ1(t) + Ψ(t)

+
1

η

( ∫ t

0

(I + ηM)−1
(
F − k0Mw1 − Lw1

)
dτ, hη

)
≥ α− t

(
B3 + k0B4

)
≥ α

2
(2.11)
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for ∀t ∈ [0, t0], t0 = min
{

α
2(B3+k0B4)

, η
2k0 , T

}
where positive constants B3 and B4 depends on

m0, m1, λ, η, T , B1, B2, mesΩ, ‖ϕ1‖C1([0,T ]), ‖Ψ‖C1([0,T ]), ‖F‖C([0,T ];L2(Ω)), ‖hη‖C([0,T ];L2(Ω)).
One can now conclude from (2.10)-(2.11) that k1(t) satisfies the inequality

|k1(t)| ≤ 2

α

{
Φ

η
+ λ

[
KB

1/2
2 exp

(B1T + 1

2

)
+ max

t∈[0,T ]
‖a‖

]}
max
t∈[0,T ]

‖hη‖ ≡ B5, (2.12)

for t ∈ [0, t0] Let us take k0 ≤ B5. Then the estimate (2.12) is valid for any t ∈ [0, T0], where

T0 = min

{
α

2(B3 + B4B5)
,

η

2B5

, T

}
.

Next let i = 2. Since inequality (2.12) holds on [0, T0], it follows that w2 satisfies (2.10)
with k1

3 = B6. Hence the inequality (2.11) is valid on [0, T0] for w2 and k2, which implies∣∣ki(t)
∣∣ ≤ B5 t ∈ [0, T0]. (2.13)

for i = 2. Repeating this procedure, one can deduce the estimate (2.13) and (2.8) with
ki−1

2 = B5 on [0, T0] for every i = 1, 2, 3, . . ., which enables to derive the estimates

η
∥∥wi(t)

∥∥2

2
≤ B6, η

∥∥wi
t(t)

∥∥2

2
≤ B7, t ∈ [0, T0], i = 1, 2, 3, . . . (2.14)

from (2.8)-(2.10). The positive constants B6 and B7 depend on η, T0, B1, B2, B5, K, m1,
m2, λ, maxt∈[0,T ] ‖F (t)‖ but does not depend on i.

Now let k̃i(t) = ki+1(t) − ki(t), w̃i(t, x) = wi+1(t, x) − wi(t, x). From (2.7),(2.13),(2.14)
it follows that

|k̃i(t)| ≤ B8‖w̃i(t)‖, t ∈ [0, T0], (2.15)

where the positive constant B8 depends on η, α, k1, λ, maxt∈[0,T ] ‖hη‖ but does not depend
on i. The function w̃i is a solution of the problem{

w̃i
t + ηMw̃i

t + ki(t)Mw̃i + Lw̃i = −k̃i−1(t)Mwi,

(w̃i + ηMw̃i)
∣∣
t=0

= 0, w̃i
∣∣
∂Ω

= 0.
(2.16)

Multiplying (2.161) by Mw̃i in terms of the inner product of L2(Ω) and integrating by parts
in the resulting equation, one can get by Cauchy’s inequality, (1.2), (1.3), (2.13) and (2.14)

d

dt

(〈
w̃i, Mw̃i

〉
1,M

+ η
∥∥Mw̃i

∥∥2
)
≤

∣∣∣k̃i−1(t)
∣∣∣2 + B9

(〈
w̃i, Mw̃i

〉
1,M

+ η
∥∥Mw̃i

∥∥2
)

(2.17)

where the constant B9 depends on λ, B5, B6, m1, m3, η. Applying Gronwall’s lemma to
(2.17) yields 〈

w̃i, Mw̃i
〉

1,M
+ η

∥∥Mw̃i
∥∥2 ≤ B10

(∫ t

0

∣∣∣k̃i−1(τ)
∣∣∣2 dτ

)1/2

. (2.18)

The positive constant B10 depends on η, B9, T0, λ, mj(j = 1, 2, 3), mes Ω, but does not
depend on i. Similarly one can derive the following estimate of w̄i

t from (2.161) and (2.18).

‖w̃i
t(t)‖2 ≤ B11

[(∫ t

0

∣∣∣k̃i−1(τ)
∣∣∣2 dτ

)1/2

+ |k̃i−1|

]
, (2.19)



6 A.Sh. Lyubanova

where the positive constant B11 depends on η, C1, C6, T0, λ, mj(j = 1, 2, 3), mesΩ, but does
not depend on i.

Let us introduce an equivalent norm in C([0, T0]) as ·µ,T0 = maxt∈[0,T0]{e−µt| · |} with
a positive constant µ to be determined later. Then (2.15), (2.18) implyk̃i(t)


µ,T0

≤ B8B10√
2µ

k̃i−1(t)


µ,T0
≤

(B8B10√
2µ

)ik̃0(t)


µ,T0
.

The last inequality shows that there exists a limit k(t) of the sequence {ki(t)} when µ satisfies
the inequality µ > (B8B10)

2/2.
This in turn provides the convergence of {wi} to a function w(t, x) in the norm of

C([0, T0]; W
2
2 (Ω)) because of (2.19). Letting i → ∞ in (2.6), (2.7), we see that the pair

(w(t, x), k(t)) is the solution of the problem (2.2), (2.5). Besides, w(t, x) satisfies the estimates
(2.14). The estimates (2.1) follows from (2.14) immediately.

The uniqueness of the solution (w, k) follows from the inequalities for the difference
(w̄, k̄) = (w′ − w′′, k′ − k′′) of two solutions (w′, k′), (w′′, k′′) of the problem (2.2), (2.5)

‖w̄(t)‖2 ≤ B13

(∫ t

0

k̄(τ)2 dτ

)1/2

,
k̄(t)


µ,T0

≤ B13√
2µ

k̄(t)


µ,T0
, t ∈ [0, T0].

The positive constant B13 depends on η, T0, B1, B3, B6, maxt∈[0,T ] ‖F‖, λ, K, m1, m2. If
µ > B2

13/2, then k̄(t) ≡ 0, and hence w̄(t, x) ≡ 0 for all t ∈ [0, T0] and almost all x ∈ Ω.
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